7.1 nth Roots and Rational Exponents

What you should learn

GOAL 1 Evaluate nth roots of real numbers using both radical notation and rational exponent notation.

GOAL 2 Use nth roots to solve real-life problems, such as finding the total mass of a spacecraft that can be sent to Mars in Example 5.

Why you should learn it

To solve real-life problems, such as finding the number of reptile and amphibian species that Puerto Rico can support in Ex. 67.

nith Roots and Rational Exponents

GOAL 1 EVALUATING nth ROOTS

You can extend the concept of a square root to other types of roots. For instance, 2 is a cube root of 8 because \(2^3 = 8\), and 3 is a fourth root of 81 because \(3^4 = 81\). In general, for an integer \(n\) greater than 1, if \(b^n = a\), then \(b\) is an \(n\)th root of \(a\).

An \(n\)th root of \(a\) is written as \(\sqrt[n]{a}\), where \(n\) is the index of the radical.

You can also write an \(n\)th root of \(a\) as a power of \(a\). For the particular case of a square root, suppose that \(\sqrt{a} = a^{1/2}\). Then you can determine a value for \(k\) as follows:

\[
\sqrt{a} \cdot \sqrt{a} = a \quad \text{Definition of square root}
\]
\[
a^k \cdot a^k = a \quad \text{Substitute } a^k \text{ for } \sqrt{a}.
\]
\[
a^{2k} = a^1 \quad \text{Product of powers property}
\]
\[
2k = 1 \quad \text{Set exponents equal when bases are equal.}
\]
\[
k = \frac{1}{2} \quad \text{Solve for } k.
\]

Therefore, you can see that \(\sqrt{a} = a^{1/2}\). In a similar way you can show that \(\sqrt[3]{a} = a^{1/3}\) and \(\sqrt[4]{a} = a^{1/4}\). In general, \(\sqrt[n]{a} = a^{1/n}\) for any integer \(n\) greater than 1.

REAL nth ROOTS

Let \(n\) be an integer greater than 1 and let \(a\) be a real number.

- If \(n\) is odd, then \(a\) has one real \(n\)th root: \(\sqrt[n]{a} = a^{1/n}\)
- If \(n\) is even and \(a > 0\), then \(a\) has two real \(n\)th roots: \(\pm \sqrt[n]{a} = \pm a^{1/n}\)
- If \(n\) is even and \(a = 0\), then \(a\) has one \(n\)th root: \(\sqrt[0]{0} = 0^{1/n} = 0\)
- If \(n\) is even and \(a < 0\), then \(a\) has no real \(n\)th roots.

EXAMPLE 1 Finding nth Roots

Find the indicated real \(n\)th root(s) of \(a\).

a. \(n = 3, a = -125\)

b. \(n = 4, a = 16\)

SOLUTION

a. Because \(n = 3\) is odd, \(a = -125\) has one real cube root. Because \((-5)^3 = -125\), you can write:

\[
\sqrt[3]{-125} = -5 \quad \text{or} \quad (-125)^{1/3} = -5
\]

b. Because \(n = 4\) is even and \(a = 16 > 0\), 16 has two real fourth roots. Because \(2^4 = 16\) and \((-2)^4 = 16\), you can write:

\[
\pm \sqrt[4]{16} = \pm 2 \quad \text{or} \quad \pm 16^{1/4} = \pm 2
\]
A rational exponent does not have to be of the form \(\frac{1}{n} \) where \(n \) is an integer greater than 1. Other rational numbers such as \(\frac{3}{2} \) and \(-\frac{1}{2} \) can also be used as exponents.

RATIONAL EXPONENTS

Let \(a^{1/n} \) be an \(n \)th root of \(a \), and let \(m \) be a positive integer.

- \(a^{m/n} = (a^{1/n})^m = (\sqrt[n]{a})^m \)
- \(a^{-m/n} = \frac{1}{a^{m/n}} = \frac{1}{(a^{1/n})^m} = \frac{1}{(\sqrt[n]{a})^m}, \ a \neq 0 \)

EXAMPLE 2 Evaluating Expressions with Rational Exponents

- \(9^{3/2} = (\sqrt{9})^3 = 3^3 = 27 \quad \text{Using radical notation} \)
- \(9^{3/2} = (9^{1/2})^3 = 3^3 = 27 \quad \text{Using rational exponent notation} \)

- \(32^{-2/5} = \frac{1}{32^{2/5}} = \frac{1}{(\sqrt[5]{32})^2} = \frac{1}{2^2} = \frac{1}{4} \quad \text{Using radical notation} \)
- \(32^{-2/5} = \frac{1}{32^{2/5}} = \frac{1}{(32^{1/5})^2} = \frac{1}{2^2} = \frac{1}{4} \quad \text{Using rational exponent notation} \)

When using a graphing calculator to approximate an \(n \)th root, you may have to rewrite the \(n \)th root using a rational exponent. Then use the calculator’s power key.

EXAMPLE 3 Approximating a Root with a Calculator

Use a graphing calculator to approximate \((\sqrt[3]{5})^3\).

SOLUTION First rewrite \((\sqrt[3]{5})^3\) as \(5^{3/4}\). Then enter the following:

Keystrokes: \(5 \) \(\div \) \(3 \) \(\div \) \(4 \) \(\) \(\) \(\) \(\) \(\text{ENTER} \)

Display: \(3.343701525 \)

\((\sqrt[3]{5})^3 \approx 3.34\)

To solve simple equations involving \(x^n \), isolate the power and then take the \(n \)th root of each side.

EXAMPLE 4 Solving Equations Using nth Roots

- \(2x^4 = 162 \) \quad \(x^4 = 81 \) \quad \(x = \pm \sqrt[4]{81} \) \quad \(x = \pm 3 \)
- \((x - 2)^3 = 10 \) \quad \(x - 2 = \sqrt[3]{10} \) \quad \(x = \sqrt[3]{10} + 2 \) \quad \(x \approx 4.15 \)
GOAL 2 USING NTH ROOTS IN REAL LIFE

EXAMPLE 5 Evaluating a Model with nth Roots

The total mass M (in kilograms) of a spacecraft that can be propelled by a magnetic sail is, in theory, given by

$$M = \frac{0.015m^2}{fd^{4/3}}$$

where m is the mass (in kilograms) of the magnetic sail, f is the drag force (in newtons) of the spacecraft, and d is the distance (in astronomical units) to the sun. Find the total mass of a spacecraft that can be sent to Mars using $m = 5000$ kg, $f = 4.52$ N, and $d = 1.52$ AU. **Source: Journal of Spacecraft and Rockets**

SOLUTION

$$M = \frac{0.015(5000)^2}{4.52(1.52)^{4/3}}$$

$$= \frac{0.015(25000000)}{4.52 \cdot 2.59}$$

$$= \frac{37500000}{11.82}$$

$$\approx 47500$$

The spacecraft can have a total mass of about 47,500 kilograms. (For comparison, the liftoff weight for a space shuttle is usually about 2,040,000 kilograms.)

EXAMPLE 6 Solving an Equation Using an nth Root

NAUTICAL SCIENCE The *Olympias* is a reconstruction of a trireme, a type of Greek galley ship used over 2000 years ago. The power P (in kilowatts) needed to propel the *Olympias* at a desired speed s (in knots) can be modeled by this equation:

$$P = 0.0289s^3$$

A volunteer crew of the *Olympias* was able to generate a maximum power of about 10.5 kilowatts. What was their greatest speed? **Source: Scientific American**

SOLUTION

$$P = 0.0289s^3$$

$$10.5 = 0.0289s^3$$

$$363 = s^3$$

$$\sqrt[3]{363} = s$$

$$7 \approx s$$

The greatest speed attained by the *Olympias* was approximately 7 knots (about 8 miles per hour).
GUIDED PRACTICE

Vocabulary Check ✓
Concept Check ✓

1. What is the index of a radical?
2. LOGICAL REASONING Let \(n \) be an integer greater than 1. Tell whether the given statement is always true, sometimes true, or never true. Explain.
 a. If \(x^n = a \), then \(x = \sqrt[n]{a} \).
 b. \(a^{1/n} = 1 \)

3. Try to evaluate the expressions \(-\sqrt[4]{625}\) and \(\sqrt[4]{625}\). Explain the difference in your results.

Evaluate the expression.
4. \(\sqrt[8]{1} \)
5. \(-\left(49^{1/2}\right)\)
6. \(\left(\sqrt{-8}\right)^5\)
7. \(3125^{2/5}\)

Solve the equation.
8. \(x^3 = 125\)
9. \(3x^5 = -3\)
10. \((x + 4)^2 = 0\)
11. \(x^4 - 7 = 993\)

12. **SHOT PUT** The shot (a metal sphere) used in men’s shot put has a volume of about 905 cubic centimeters. Find the radius of the shot. (Hint: Use the formula \(V = \frac{4}{3}\pi r^3\) for the volume of a sphere.)

PRACTICE AND APPLICATIONS

USING RATIONAL EXPONENT NOTATION Rewrite the expression using rational exponent notation.
13. \(\sqrt[14]{1}\)
14. \(\sqrt[11]{1}\)
15. \(\left(\sqrt[5]{5}\right)^2\)
16. \(\left(\sqrt[16]{16}\right)^5\)
17. \(\left(\sqrt[2]{2}\right)^{11}\)

USING RADICAL NOTATION Rewrite the expression using radical notation.
18. \(6^{1/3}\)
19. \(7^{1/4}\)
20. \(10^{3/7}\)
21. \(5^{2/5}\)
22. \(8^{7/4}\)

FINDING \(n\)TH ROOTS Find the indicated real \(n\)th root(s) of \(a\).
23. \(n = 2, a = 100\)
24. \(n = 4, a = 0\)
25. \(n = 3, a = -8\)
26. \(n = 7, a = 128\)
27. \(n = 6, a = -1\)
28. \(n = 5, a = 0\)

EVALUATING EXPRESSIONS Evaluate the expression without using a calculator.
29. \(\sqrt[64]{64}\)
30. \(-\sqrt[1000]{1000}\)
31. \(-\sqrt[64]{64}\)
32. \(4^{-1/2}\)
33. \(1^{1/3}\)
34. \(-\left(256^{1/4}\right)\)
35. \(\left(\sqrt[16]{16}\right)^2\)
36. \(\left(\sqrt[27]{27}\right)^{-4}\)
37. \(\left(\sqrt[0]{0}\right)^3\)
38. \(-\left(25^{-3/2}\right)\)
39. \(32^{4/5}\)
40. \(-\left(125^{-2/3}\right)\)

APPROXIMATING ROOTS Evaluate the expression using a calculator. Round the result to two decimal places when appropriate.
41. \(\sqrt{-16,807}\)
42. \(\sqrt[112]{112}\)
43. \(\sqrt[5]{65,536}\)
44. \(4^{110}\)
45. \(10^{-1/4}\)
46. \(-\left(1331^{1/3}\right)\)
47. \(\left(\sqrt[112]{112}\right)^{-4}\)
48. \(\left(\sqrt{-280}\right)^3\)
49. \(\left(\sqrt[6]{6}\right)^2\)
50. \((-190)^{-4/5}\)
51. \(26^{-3/4}\)
52. \(522^{2/7}\)
SOLVING EQUATIONS Solve the equation. Round your answer to two decimal places when appropriate.

53. \(x^5 = 243 \)
54. \(6x^3 = -1296 \)
55. \(x^6 + 10 = 10 \)

56. \((x - 4)^4 = 81 \)
57. \(-x^7 = 40 \)
58. \(-12x^4 = -48 \)

59. \((x + 12)^3 = 21 \)
60. \(x^3 - 14 = 22 \)
61. \(x^8 - 25 = -10 \)

62. **BIOLOGY CONNECTION** For mammals, the lung volume \(V \) (in milliliters) can be modeled by \(V = 170m^{4/5} \) where \(m \) is the body mass (in kilograms). Find the lung volume of each mammal in the table shown.

<table>
<thead>
<tr>
<th>Mammal</th>
<th>Body mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banded mongoose</td>
<td>1.14</td>
</tr>
<tr>
<td>Camel</td>
<td>229</td>
</tr>
<tr>
<td>Horse</td>
<td>510</td>
</tr>
<tr>
<td>Swiss cow</td>
<td>700</td>
</tr>
</tbody>
</table>

Source: *Respiration Physiology*

63. **SPILLWAY OF A DAM** A dam’s spillway capacity is an indication of how the dam will perform under certain flood conditions. The spillway capacity \(q \) (in cubic feet per second) of a dam can be calculated using the formula \(q = ch^{3/2} \) where \(c \) is the discharge coefficient, \(l \) is the length (in feet) of the spillway, and \(h \) is the height (in feet) of the water on the spillway. A dam with a spillway 40 feet long, 5 feet deep, and 5 feet wide has a discharge coefficient of 2.79. What is the dam’s maximum spillway capacity?

Source: *Standard Handbook for Civil Engineers*

64. **INFLATION** If the price of an item increases from \(p_1 \) to \(p_2 \) over a period of \(n \) years, the annual rate of inflation \(i \) (expressed as a decimal) can be modeled by \(i = \left(\frac{p_2}{p_1} \right)^{1/n} - 1 \). In 1940 the average value of a home was $2900. In 1990 the average value was $79,100. What was the rate of inflation for a home?

Source: Bureau of the Census

65. **GEOMETRY CONNECTION** The formula for the volume \(V \) of a regular dodecahedron (a solid with 12 regular pentagons as faces) is \(V = 7.66a^3 \) where \(a \) is the length of an edge of the dodecahedron. Find the length of an edge of a regular dodecahedron that has a volume of 30 cubic feet. Round your answer to two decimal places.

66. **GEOMETRY CONNECTION** The formula for the volume \(V \) of a regular icosahedron (a solid with 20 congruent equilateral triangles as faces) is \(V = 2.18a^3 \) where \(a \) is the length of an edge of the icosahedron. Find the length of an edge of a regular icosahedron that has a volume of 21 cubic centimeters. Round your answer to two decimal places.

67. **ISLAND SPECIES** Philip Darlington discovered a rule of thumb that relates an island’s land area \(A \) (in square miles) to the number \(s \) of reptile and amphibian species the island can support by the model \(A = 0.0779s^3 \). The area of Puerto Rico is roughly 4000 square miles. About how many reptile and amphibian species can it support?

Source: *The Song of the Dodo: Island Biogeography in an Age of Extinctions*
68. **MULTI-STEP PROBLEM** A board foot is a unit for measuring wood. One board foot has a volume of 144 cubic inches. The Doyle log rule, given by \(b = \left(\frac{r}{2} \right)^2 \), is a formula for approximating the number \(b \) of board feet in a log with length \(l \) (in feet) and radius \(r \) (in inches). The total volume \(V \) (in cubic inches) of wood in the main trunk of a Douglas fir can be modeled by \(V = 250r^3 \) where \(r \) is the radius of the trunk at the base of the tree. Suppose you need 5000 board feet from a 20 foot Douglas fir log.

a. What volume of wood do you need?

b. What is the radius of a log that will meet your needs?

c. What is the total volume of wood in the main trunk of a Douglas fir tree that will meet your needs?

d. If you find a suitable tree, what fraction of the tree would you actually use?

e. **Writing** How does your answer to part (d) change if you instead need only 2500 board feet?

69. **VISUAL THINKING** Copy the table. Give the number of \(n \)th roots of \(a \) for each category.

<table>
<thead>
<tr>
<th>(a)</th>
<th>(n) even</th>
<th>(n) odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a < 0)</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>(a = 0)</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>(a > 0)</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

70. The graph of \(y = x^n \) where \(n \) is even is shown in red. Explain how the graph justifies the table for \(n \) even.

71. Draw a similar graph to justify the table for \(n \) odd.

MIXED REVIEW

SOLVING SYSTEMS Use Cramer’s rule to solve the linear system. (Review 4.3)

72. \(x + 4y = 12 \)
\(2x + 5y = 18 \)
73. \(x - 2y = 11 \)
\(2x + 5y = -14 \)
74. \(2x - 4y = 7 \)
\(-x + y = 1 \)
75. \(-3x + 2y = -9 \)
\(x - 4y = 2 \)
76. \(-x - 8y = 10 \)
\(10x + y = 1 \)
77. \(-x - y = 0 \)
\(5x - 6y = 13 \)

SIMPLIFYING EXPRESSIONS Simplify the expression. Tell which properties of exponents you used. (Review 6.1 for 7.2)

78. \(x^4 \cdot x^{-2} \)
82. \(\frac{x^3}{x^{-4}} \)
79. \((x^{-3})^5 \)
83. \(\left(\frac{x^{-2}}{y} \right)^2 \)
80. \((2xy)^{-3} \)
84. \(\frac{7x^3y^8}{14xy^{-2}} \)
81. \(5x^{-2}y^0 \)
85. \(\frac{16xy}{9x^5} \cdot \frac{9x^6y}{4y} \)

FINDING ZEROS Find all the zeros of the polynomial function. (Review 6.7)

86. \(f(x) = x^3 + 9x^3 - 5x^2 - 153x - 140 \)
87. \(f(x) = x^4 + x^3 - 19x^2 + 11x + 30 \)
88. \(f(x) = x^3 - 5x^2 + 16x - 80 \)
89. \(f(x) = x^3 - x^2 + 9x - 9 \)